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The long-time limit of the response of incompressible three-dimensional boundary
layer flows on infinite swept wedges and infinite swept wings to impulsive forcing is
examined using causal linear stability theory. Following the discovery by Lingwood
(1995) of the presence of absolute instabilities caused by pinch points occurring in
the radial direction in the boundary layer flow of a rotating disk, we search for
pinch points in the crossflow direction for both the model Falkner–Skan–Cooke
profile of a swept wedge and for a genuine swept-wing configuration. It is shown
in both cases that, within a particular range of the parameter space, the boundary
layer does indeed support pinch points in the wavenumber plane corresponding to
the crossflow direction. These crossflow-induced pinch points do not constitute an
absolute instability, as there is no simultaneous pinch occurring in the streamwise
wavenumber plane, but nevertheless we show here how they can be used to find
the maximum local growth rate contained in a wavepacket travelling in any given
direction. Lingwood (1997) also found pinch points in the chordwise wavenumber
plane in the boundary layer of the leading-edge region of a swept wing (i.e. at
very high flow angles). The results presented in this paper, however, demonstrate the
presence of pinch points for a much larger range of flow angles and pressure gradients
than was found by Lingwood, and indeed describe the flow over a much greater, and
practically significant, portion of the wing.

1. Introduction
An understanding of the stability properties of the boundary layers on swept wings

is essential for the development of laminar-flow technology on the next generation of
civil aircraft. Laminar flow control is concerned with the delay of laminar–turbulent
transition on the wing using either passive means (e.g. modification of pressure
gradient, wall shaping) or active means (e.g. wall suction, heat transfer), in order
to ensure an extensive region of low-skin-friction drag over much of the surface
of the wing, thereby improving fuel efficiency and reducing aircraft operating costs.
Linear stability theory together with empirical transition prediction methods (Van
Ingen 1956) have been used extensively in the design of swept aircraft wings. These
methods use the concept that a small disturbance introduced into the boundary layer
will trigger transition when it has been amplified by a factor of eN . The flow is
modelled as being convectively unstable, so the boundary layer can remain laminar
until the disturbance has travelled sufficiently far downstream to have grown to
a large enough amplitude to cause nonlinearities that trigger transition. The eN
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method is based on tracking single normal modes in the boundary layer using various
integration strategies, such as the the envelope method (Malik & Orszag 1980), and
does not model the full physics of the instability waves in the boundary layer flow.
It does, however, provide a means for correlation of transition location using linear
stability theory with experiment and flight tests. In this paper we will describe an
alternative method, in which the long-time limit of the response of the boundary layer
is evaluated by investigating the presence of crossflow-induced pinch points between
modes in the crossflow–wavenumber plane. We will demonstrate how this property
can be used to follow the evolution of a wavepacket, and in particular to determine
the maximum growth rate for propagation in a given direction, with the significant
advantage of being able to study the range of unstable frequencies contained in the
wavepacket, rather than just unstable modes of a single frequency as performed in
an eN calculation.

The work of Briggs (1964) and Bers (1975) in plasma physics has shown that in
two dimensions an absolute instability is caused by modes propagating in opposite
directions pinching together so that the group velocity component in the correspond-
ing physical direction is zero. A flow that is absolutely unstable supports disturbances
that grow in time at a fixed point in space, eventually leading to nonlinearities and
thereby causing transition to turbulence, and absolute instability mechanisms have
been demonstrated to exist for a number of flow regimes: for near-wake flows (Betchov
& Criminale 1966; Koch 1985), for flows over a compliant surface (Brazier-Smith &
Scott 1984), and for mixing layers with backflow (Huerre & Monkewitz 1985). These
authors have shown that variation of a control parameter, such as the Reynolds
number, can cause pinch points to occur, leading to local absolute instabilities. In
three dimensions Brevdo (1991) has shown that pinch points occurring in both spatial
complex wavenumber planes simultaneously are necessary (and sufficient) for abso-
lute instability. Lingwood (1997) found that the flow near the attachment line of a
swept wing supports pinch points in the complex wavenumber plane corresponding
to the chordwise direction only, but it is emphasised that no simultaneous spanwise
pinch points were found, indicating the absence of an absolute instability mechanism
for this flow.

Lingwood (1995) has demonstrated that within a certain range of the parameter
space, the boundary layer flow over a disk rotating in an otherwise still fluid supports
absolute instabilities caused by the occurrence of a pinch point in the radial direction.
(The simultaneous occurrence of a pinch point in the azimuthal plane is not necessary
for absolute instability in this case only, since the circular symmetry forces the
azimuthal wavenumber to be an integer.) The experimental analysis of Lingwood
(1996) demonstrated that the onset of laminar–turbulent transition on the rotating-
disk boundary layer is indeed consistent with the characteristics of an absolutely
unstable flow. The flow over the rotating disk is characterized by the presence of a
velocity component which is inflectional in the radial direction, and since this is also a
feature of the crossflow velocity component in the three-dimensional boundary layer
on a swept wing, M. Gaster (1994, personal communication) suggested that pinch
points may also be supported by the swept-wing boundary layer. It was precisely
this suggestion which was investigated by Lingwood (1997), and as mentioned above
pinches were indeed found at high flow angles close to the leading edge (actually
in the wing chordwise direction, which for high flow angle is close to the crossflow
direction). In this paper we conduct a more extensive search of parameter space, and
locate another pinch, this time in the genuine cross-stream direction, which exists
for a much larger range of flow angles and at lower Reynolds numbers than was
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found by Lingwood, and which is therefore capable of describing the flow over a
considerably larger portion of the wing.

A considerable body of experimental and theoretical work already exists on swept-
wing transition, and only a brief summary is necessary here. Gray (1952) observed in
experiments that transition to turbulence occurs at a much lower Reynolds number on
swept wings than on unswept wings, and that the boundary layer flow over the swept
wing is characterized by the appearance of striations in the laminar boundary layer,
caused by a series of stationary vortices with axes lying in the streamwise direction due
to the inviscid instability of the inflectional crossflow velocity component (Gregory,
Stuart & Walker 1955). Travelling crossflow instabilities have also been observed
in experiments on a swept cylinder by Poll (1985). Disturbances in the boundary
layer are generally amplified by the inviscid crossflow mechanism in the negative
pressure rise region near the leading edge of the wing, and by the viscous streamwise
Tollmien–Schlichting (TS) mechanism in the flat pressure region at the mid-chord
of the wing. These disturbances initially grow linearly, while travelling downstream,
until they amplify sufficiently to enter a region where nonlinear interactions and the
development of secondary instabilities cause the breakdown of the laminar flow into
turbulence (Malik, Li & Chang 1994). The triggering of transition on a swept-wing
boundary layer can also be caused by the instability of the attachment-line boundary
layer to TS waves, which can be stabilized using suction (Hall, Malik & Poll 1984).
The analysis in this paper is, of course, relevant to just the linear stages of swept-wing
boundary layer instabilities.

In this paper we will first investigate the presence of crossflow-induced pinch points
in the Falkner–Skan–Cooke boundary layer. This family of profiles describes the
boundary layer on a swept wedge, and is often used to model the boundary layer on
a swept wing, since it allows the magnitude of the inflectional crossflow component to
be varied in a systematic way. In this respect we will vary both the Hartree pressure
gradient parameter and the flow angle in order to investigate the effect of changes
in the crossflow component on the pinch point mechanism, and also look at the
effect of suction and blowing. The boundary layer is assumed to be laminar with no
leading-edge contamination, and we will also assume that the velocity profiles have
not been modified by the presence of large convective disturbances, e.g. travelling and
stationary crossflow vortices, that have not yet triggered transition in the boundary
layer. In §2 we describe the theory and methods used to perform the analysis, and in
§3 results are presented for the Falkner–Skan–Cooke boundary layer. In §4 we then
go on to study the pinch point mechanism on a NASA laminar flow airfoil, in order
to demonstrate that the mechanism is indeed supported by a physical swept wing. We
then analyse these results in §5 and give our conclusions in §6.

2. Problem formulation
2.1. Mean flow

The Falkner–Skan–Cooke (FSC) solution for the incompressible boundary layer flow
over an infinite swept wedge at zero angle of attack is described by Cooke (1950)
and will be used here to provide a model of the boundary layer flow over a swept
wing. Although the pressure gradient on a genuine airfoil is not constant over the
chordlength, which is an assumption of the FSC solution, there are two parameters
in the FSC formulation that allow the magnitude of the crossflow to be varied, and
which enable us to study in a systematic way the properties of a boundary layer
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Figure 1. The FSC flow geometry, where U and W are the streamwise and crossflow components
of the non-dimensionalized velocity respectively. U∗∞ is the speed of the local potential flow which
is at an angle ψpot with respect to the undisturbed free stream, with components U∗c∞ and W ∗

s∞ in
the chordwise and spanwise directions respectively.

similar to that found on a swept wing. (In §4 we will analyse the boundary layer on a
genuine swept wing.) The first parameter of the FSC formulation is the dimensionless
pressure gradient, or ‘Hartree’, parameter βH used in the two-dimensional Falkner–
Skan boundary layer, and the second is the ratio of spanwise and chordwise velocities.
The inviscid free-stream velocity in the chordwise direction normal to the leading edge
is taken to be

U∗c∞ = C∗(x∗c)
m,

where x∗c is the chordwise coordinate, C∗ is a positive constant and the asterisk
denotes dimensional quantities. In the direction parallel to the leading edge the
spanwise potential velocity is taken to have the constant value W ∗

s∞. The wedge angle
is βHπ/2, where βH = 2m/(m + 1). The boundary layer flow in the chordwise and
spanwise directions is now written as

Uc = U∗c /U
∗
c∞ = f′(η),

Ws = W ∗
s /W

∗
s∞ = g(η),

where

η =

[
(m+ 1)U∗c∞

2ν∗x∗c

]1/2

y∗,
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Figure 2. (a) The FSC velocity profiles for βH = −0.05, 0.05, 0.5, 1.0 at θ = 45◦.
(b) The FSC velocity profiles for θ = 20◦, 45◦, 70◦ at βH = 1.0.

y∗ is the coordinate in the direction normal to the wedge plane and ν∗ is the kinematic
viscosity. The functions f and g satisfy

f′′′ + ff′′ + βH (1− f′2) = 0, (1)

g′′ + fg′ = 0, (2)

with the boundary conditions

f(0) = f′(0) = g(0) = 0, f′(∞) = g(∞) = 1. (3)

The details of the derivation of this solution are discussed in Rosenhead (1963).
In this paper we will be studying the streamwise and crossflow velocity components,

which are constructed using the functions f and g. This is done by choosing the
direction of the undisturbed free stream and defining the sweep angle of the wedge,
ψsw , relative to it; see figure 1. The local inviscid outer flow has speed U∗∞ =
(U∗2c∞ + W ∗2

s∞)1/2, and is in the direction making an angle ψpot with respect to the
undisturbed free stream. The direction of this outer flow defines the streamwise
direction, x, and normal to it the crossflow direction, z. The angle between the
streamwise direction and the chordwise direction is the flow angle θ, which is now
given by

θ = tan−1

(
W ∗

s∞
U∗c∞

)
= ψsw + ψpot;

see figure 1 for details. Using the local outer velocity U∗∞ to normalize our flow
speeds, it can then be shown that the dimensionless streamwise and crossflow velocity
components in the boundary layer are

U(η) = f′(η) cos2 θ + g(η) sin2 θ, (4)

W (η) = (−f′(η) + g(η)) cos θ sin θ, (5)

respectively. In figure 2(a) we show the FSC profiles with flow angle θ = 45◦,
corresponding to maximum crossflow, for a number of pressure gradients. As βH
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Figure 3. FSC velocity profiles for βH = 0.5 and θ = 45◦ for a range of values of the wall
suction/blowing parameter, κ = −0.1, 0, 0.1.

decreases from 1.0, the inflection point in the crossflow velocity component drifts
outwards and the displacement thickness in the streamwise direction increases. In
figure 2(b) we see that for fixed βH (in this graph βH = 1.0) the crossflow velocity
profiles have the same shape, with only the magnitude changing with flow angle. The
velocity profiles for the flow angles of 20◦ and 70◦ have the same crossflow component,
but the streamwise components do differ, with the streamwise displacement thickness
increasing as the flow angle increases.

We will also explore the effects of suction and blowing on the stability of the FSC
boundary layers by applying the boundary condition

f(0) = κ,

instead of f(0) = 0 (Rosenhead 1963). In this way we generate a distribution of
suction (κ > 0) and of blowing (κ < 0) with wall-normal velocity proportional to

x
∗−1/2
c . Figure 3 shows the suction and blowing boundary layer for κ = 0.1, 0 and
−0.1 at βH = 0.5 and θ = 45◦. The inflection point moves inward/outward and the
streamwise displacement thickness decreases/increases with suction/blowing.

2.2. Linear stability theory

We use the form of the incompressible linear stability equations discussed by Mack
(1984), in which the mean flow is assumed to be parallel so that the problem reduces
to finding the eigenvalues of the three-dimensional Orr–Sommerfeld equation. These
eigenvalues satisfy the dispersion relation

D(α, β, ω, Re) = 0,

where α and β are the wavenumbers in the streamwise and crossflow directions
respectively, ω is the complex frequency, and Re is the Reynolds number based on



Incompressible swept-wing boundary layers 365

the streamwise displacement thickness

Re =
U∗∞δ

∗

ν∗
.

At a fixed Reynolds number there are six real quantities in the dispersion relation,
namely the real and imaginary parts of α, β and ω, and any two can be determined as
eigenvalues when the other four are specified. In order to find the temporal and spatial
eigenvalue spectra of the stability problem we use a global boundary-value method
(Malik 1990), which gives the higher modes needed for locating pinch points. We use
the fourth-order system of equations with two second-order momentum equations and
the first-order continuity equation. The differential equations are converted into linear
algebraic equations using a finite-difference method on a staggered grid, in order
to avoid having to supply an artificial pressure perturbation boundary condition.
The eigenvalue spectra are obtained by solving the characteristic determinant of the
generalized eigenvalue problem and these global results are then used as guesses for the
local eigenvalue solver. The latter uses the shooting method with a fixed-step fourth-
order Runge–Kutta integrator, with a Gram–Schmidt orthonormalization procedure
at selected integration steps, and a linear Newton–Raphson search procedure (Mack
1984). In this way the higher-order modes can be determined efficiently with good
accuracy. Full details of this procedure are given in Taylor (1997).

2.3. Causal response theory

We recall that α is the wavenumber in the streamwise direction and β is the wavenum-
ber in the direction of the inflectional profile (i.e. the crossflow direction). We will
use the theory of Briggs (1964) to find the causal solution to the impulse response
problem in the long-time limit t → ∞. In order to apply Briggs’ method we solve
the governing equations subject to an impulsive point forcing δ(x − x0)δ(z − z0)δ(t),
and the space–time evolution of the response is then described by a single-Laplace
double-Fourier Green’s function of the form

G(x, z, t) =
1

8π3

∫
L

dω

∫
E

∫
F

dαdβ
exp[i(α(x− x0) + β(z − z0)− ωt)]

D(α, β, ω, Re)
. (6)

The inversion contour L in the complex frequency plane is a horizontal line located
above all the singularities of the integrand, while the E and F contours are initially
taken along the real α- and β-axes respectively. After performing the ω-inversion
integral in equation (6), by closing the L contour with semicircles at infinity and using
the residue theorem, we find

G ∼ H(t)

4π2i

∫
E

∫
F

dαdβ

n∑
j=1

exp[ψ(α, β)t]

∂D(α, β, ωj, Re)/∂ω
, (7)

where we have considered the discrete response only and neglected the branch cut
contributions, which is sufficient to determine the long-time limit of the causal solution
(Lingwood 1997). Here

ψ(α, β) ≡ ψr + iψi = i

[
α

(x− x0)

t
+ β

(z − z0)

t
− ω(α, β)

]
, (8)

ω = ωj for j = 1, 2, ..., n are the first-order poles of the ω integrand in equation (6)
and H(t) is the Heaviside unit-step function. We use the method of steepest descents
to study the asymptotic behaviour of the integral (7) for large t, where (x− x0) and
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(z − z0) are also large parameters and u ≡ (x − x0)/t and v ≡ (z − z0)/t are O(1).
We thereby consider the evolution of the boundary layer as measured by an observer
moving in the streamwise and crossflow directions with speeds u and v respectively.
Dominant contributions are given by the saddle points of ψ(α, β), and at these saddle
points we have

∂ωr

∂αr
= u,

∂ωr

∂βr
= v, (9)

∂ωi

∂αr
= 0,

∂ωi

∂βr
= 0. (10)

At a crossflow-induced pinch point in the β-plane we will have, by definition, v = 0
so that

ψr = (ωi − αiu) =

(
ωi − αi

∂ωr

∂αr

)
.

If we now keep v = 0 but allow u to vary (as suggested by Lingwood 1997), then the
maximum value for ψr for varying u occurs when

∂ψr

∂u
=
∂ωi

∂αi

∂αi

∂u
− αi −

∂αi

∂u
u = 0.

However, by the Cauchy–Riemann equations

∂ωi

∂αi
=
∂ωr

∂αr
= u,

and therefore αi = 0, and hence α is real, at the maximum of ψr . By searching for
crossflow-induced pinch points we can therefore locate the maximum growth in the
streamwise direction using only real values of the streamwise wavenumber α, and this
point of maximum growth corresponds to the point where

∂ωi

∂αr
= 0.

The crossflow-induced pinch points of the FSC boundary layer and for a genuine
swept airfoil are examined in §3 and §4 respectively.

In figure 4 we sketch the contours of positive ψr in the (u, v)-plane. The maximum
value of ψr in this plane occurs when

∂ψr

∂u
=
∂ψr

∂v
= 0,

or equivalently when αi = βi = 0. We have just shown how to calculate the maximum
value of ψr on the u-axis (i.e. for v = 0) by putting αi = 0 and finding the maxi-
mum value of ωi at a β pinch, and this point is marked umax on figure 4. The
maximum value of ψr in the (u, v)-plane is denoted ψmaxr , and this point is connected
to the point umax by a line with αi = 0, as shown in figure 4. In order to find the
maximum value of ψr in the (u, v)-plane it will be necessary to rotate the axes until
the u-axis goes through the point ψmaxr , but we will discuss this further in §5. We also
note that if the region enclosed by the zero contour ψr = 0 contains the origin of
the (u, v)-plane, then an absolute instability would occur due to a simultaneous pinch
point (with u = v = 0) in both wavenumber planes, but no such point was found in
our calculations. Further details of this analysis are given in Lingwood (1997).

In order to locate pinch points in the crossflow wavenumber β-plane we therefore
keep the value of α, the streamwise wavenumber, real and the E-contour fixed on the
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Figure 4. Sketch of contours of ψr > 0 in the (u, v)-plane.

real axis. We can now use the techniques devised by Briggs (1964) and Bers (1975) for
locating an absolute instability in a single-Fourier Green’s function to find pinches in
the β-plane. We are interested in those pinch points that occur for positive temporal
growth rates, i.e. when ωi > 0. We emphasize again that in order to find an absolute
instability in the boundary layer of a swept wing we would require a simultaneous
pinch of discrete modes originating in distinct half-planes to occur in the α and β
wavenumber planes at a positive value of ωi (Brevdo 1991) (i.e. simultaneous pinch
points in the two wavenumber planes). The group velocity would be zero at such a
point, and presumably transition would be triggered in the boundary layer by the
growth of disturbances to large amplitudes leading to nonlinearities at a fixed point
of space. We were unable to find any such double pinch points. However, as described
earlier, significant information about the long-time behaviour of the system can be
obtained by considering single pinch points (in the β-plane) for real α, and this will
be described in the rest of the paper.

We will refer to mappings of the F-contour at a fixed point on the E-contour
into the ω-plane as temporal branches, and the mapping of the L-contour at a fixed
point on the E-contour into the β-plane as spatial branches. These mappings are
multi-valued, and the Briggs’ criterion for a pinch point requires a pinch to occur
between two, or more, of the spatial branches, of which at least two must originate
from distinct half-β-planes when ωi is sufficiently large and positive. The crossflow
group velocity component ∂ω/∂β is zero at the pinch point. An entirely equivalent,
and for the present problem more convenient, method to locate β pinch points is to
study the behaviour of the unstable temporal branches of the mapping of F into the
ω-plane. Kupfer, Bers & Ram (1987) demonstrate how the presence of a cusp in the
unstable branch in the complex ω-plane is used to locate pinch points and we shall
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Figure 5. A pinch point for α = 0.1 and Re = 1000. (a) The pinch between two spatial branches
(dashed-lines) occurring in the β-plane and (b) the cusp in the unstable temporal branch in the
mapping of F into the ω-plane.

also use this method in our analysis. We now proceed to present results for the model
FSC profiles in §3, and for the profiles from a genuine swept airfoil in §4.

3. FSC results
3.1. Pinch point

In figure 5 we show the complex ω- and β-planes at a crossflow-induced pinch point
for the pressure gradient βH = 1.0 and the flow angle θ = 45◦, which corresponds
to the FSC profile with the crossflow component of largest magnitude, at Reynolds
number Re = 1000. The value of the streamwise wavenumber, α = 0.1, was chosen
to correspond to a point close to the maximum positive ωi for this particular profile.
The mapping of the dashed-line contour L in the ω-plane into the β-plane (figure 5a)
demonstrates the presence of a pinch between two spatial branches in the β-plane.
The dotted lines emerging from the pinch point in the β-plane show how the two
pinching modes are affected as we increase the value of ωi from its value at the pinch
point (following the arrow in figure 5b), and we see how these two lines then extend
into distinct halves of the β-plane (indicated by the arrows in figure 5a), which is
essential for a genuine pinch to occur as described in the previous section. The solid
line in the ω-plane graph (figure 5b) corresponds to the mapping of the F-contour
from the β-plane onto the unstable branch in the ω-plane. Here we can see the
presence of a cusp, indicating the presence of a pinch point in the β-plane, and the
position of the apex of the cusp corresponds to the value of ω at the pinch point.
The group velocity component in this wavenumber direction, ∂ω/∂β, is zero at the
pinch point. In this case βi > 0, but values of the parameters βH and θ can also be
found for which the pinch occurs in the lower half of the β-plane.

3.2. Favourable pressure gradient

In figure 6 we show the range of values of flow angle θ and streamwise wavenumber
α for which the unstable pinch points exist, with βH = 1.0 and at a range of Reynolds
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Figure 6. Loops of pinch points at βH = 1.0 for Re = 300, 500 and 1000. The area inside the loops
represents regions of unstable pinch points with ωi > 0 and ∂ω/∂β = 0. The stable region with
ωi < 0 lies outside the loops.

numbers. The regions inside the loops support unstable pinch points in the crossflow
direction, while outside the loops ωi < 0. The size of the region of unstable pinch
points increases with increasing Reynolds number, while the minimum flow angle at
which a pinch point occurs decreases with increasing the Reynolds number, from 60◦

at Re = 300 to 37◦ at Re = 1000. At Re = 2000 (not shown) the minimum flow
angle at which a pinch point occurs is 28◦. In figure 7 we plot the magnitude of
the growth rate at the pinches at a flow angle of θ = 65◦, again with βH = 1.0, and
the destabilizing influence of increasing Reynolds number is clear. For Re = 280 the
pinch occurs only for negative ωi and the critical Reynolds number for the onset of an
unstable pinch point (i.e. with ωi > 0) here is approximately 290, and is significantly
lower than the critical Reynolds number of 561 for the onset of a chordwise pinch at
this value of the pressure gradient found by Lingwood (1997) (the latter was found
at a flow angle of θ = 82◦). At θ = 82◦ and βH = 1.0 we find in the present analysis
that the critical Reynolds number for an unstable crossflow-induced pinch point
is similar to that found by Lingwood for a chordwise pinch point. The parameter
values βH = 1.0 (representing the flow over a swept wedge of angle 90◦) and θ = 90◦

(describing a purely spanwise flow) are used to model the flow at the leading edge
of a swept wing, and θ = 82◦ therefore describes the boundary layer flow at a point
very close to the leading edge.

We have therefore found that the minimum critical Reynolds number of 290 for
a crossflow-induced pinch occurs at a flow angle of approximately 65◦ for βH = 1.0,
while in figure 12 it will be shown that for βH = 0.5 a crossflow-induced pinch point
mechanism is supported by the boundary layer at a flow angle of 60◦ and a Reynolds
number of 300. It is entirely feasible that the flow over a swept wing may support a
boundary layer flow with this flow angle at a pressure gradient close to the value of
βH = 0.5, and thereby support a pinch point at as low a Reynolds number as 300.
(Note that the pressure gradient and flow angle decrease as we proceed down along
the chord in the positive-pressure-gradient region of a swept wing.) In figure 2 it is
shown that the flow angles θ = 70◦ and θ = 20◦ have the same crossflow velocity
component, but in figure 6 we see that the former flow angle supports an unstable
pinch point, while the latter does not. The interaction of the streamwise component



370 M. J. Taylor and N. Peake

0 0.05 0.10 0.15 0.20
α

ωi

Re

0.25

0.015

0.010

0

0.005

–0.005

280
300
500

1000
2000

Figure 7. Curves of the temporal growth rates at pinch points for βH = 1.0 and θ = 65◦ at a range
of Reynolds numbers, Re = 280 to 2000.
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Figure 8. Pinch point loops for a Reynolds number of Re = 1000 and a range of positive pressure
gradients βH = 0.05 to 1.0.

of the velocity profile with the crossflow component is therefore important in causing
pinch points: a larger streamwise displacement thickness is more unstable.

In figure 8, we show the crossflow-induced pinch point loops for a range of pressure
gradients βH at Re = 1000. The range of streamwise wavenumbers and the minimum
flow angle at which a pinch point occurs decrease as βH is reduced from 1.0 to
0.1. In the flow over a swept wing, the flow angle of the streamline on the wing
decreases as the pressure gradient is reduced (i.e. at the leading edge the flow is purely
spanwise, but as we move down the wing the magnitude of the chordwise component
of the velocity increases, thereby reducing the flow angle). In order for a real wing
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Figure 9. Curves of the temporal growth rates at pinch points, at Re = 1000 and θ = 60◦ for
βH = 0.05 to 1.0.

to support pinch points we would require the minimum flow angle at which unstable
pinch points occur to decrease as the pressure gradient is reduced, and from figure 8
we see that this is indeed the case. As βH is then decreased from 0.1 to 0.05 in figure 8,
the minimum flow angle at which a pinch occurs increases, and this is because, as we
saw in figure 2(a), the magnitude of the crossflow component of the velocity profiles
disappears as βH tends to zero, so that a crossflow-induced pinch will also disappear
in this limit. This effect can also be seen in figure 9, where the magnitude of ωi at
the pinch points at a flow angle of θ = 60◦ and a Reynolds number of Re = 1000,
which is a flow angle close to the largest range of unstable streamwise wavenumbers
for each pressure gradient, is shown for the four different pressure gradients used in
figure 8. The magnitude of the instabilities decreases dramatically as βH → 0, while
the largest value of ωi changes little between βH = 1.0 and βH = 0.5.

3.3. Adverse pressure gradient

In figure 10 we show the pinch point curves for βH = −0.1 at Re = 1000 for three
flow angles θ = 30◦, 45◦ and 60◦. We notice that there is a larger range of streamwise
wavenumbers supporting pinch points at the lower flow angle of θ = 30◦, while the
range and the magnitude of the growth rate at the pinch points has decreased at the
higher flow angle of θ = 60◦. This is in contrast to the case of positive βH , where
for θ < 45◦ the pinch point range and magnitude decrease with decreasing θ, and for
θ > 45◦ the range and magnitude increase with increasing θ. The pinch points in an
adverse pressure gradient flow are more unstable at lower flow angles, and because
the flow angle increases from 0◦ at zero chord length to 90◦ at infinite chord length in
a region of adverse pressure gradient (in contrast to the case of a region of positive
pressure gradient where θ goes from 90◦ at the zero length chord to 0◦ as the chord
length goes towards infinity), the results should be applicable to a genuine swept
wing. If we compare figures 9 and 10 we see that the maximum value of ωi at a pinch
point is considerably higher (by a factor of 5) when βH = −0.1 than when βH = 0.1,
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Figure 10. Curves of the temporal growth rates at pinch points for a case of negative pressure
gradient, βH = −0.1, with Re = 1000 for three values of the flow angle θ = 30◦, 45◦, 60◦.
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Figure 11. (a) The cusp occurring in the ω-plane, and (b) The equivalent pinch, by plotting the
behaviour of the modes as we increase the imaginary part of ω from its value at the pinch point.
Both modes remain in the upper half-plane before joining the continuous spectrum along the
imaginary β-axis, indicating that this is not a pinch point.

indicating the strong destabilizing influence of a negative pressure gradient. However,
despite this larger magnitude the pinch points disappear in the limit of βH →− 0, i.e.
as the crossflow velocity component disappears. When searching for pinch points at
this pressure gradient, we found another region of the parameter space where two
modes coalesced in the wavenumber plane in the crossflow direction, an example of
which is shown in figure 11. Again we see the characteristic cusp in the ω-plane which
has a point of zero crossflow group velocity component, i.e. ∂ω/∂β = 0, at the apex of
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Figure 12. Pinch point loops at βH = 0.5 and Re = 300 for a range of values of the
suction/blowing parameter κ.

the cusp. However, when we look at the behaviour of the coalescing modes (indicated
by the arrows) in the β-plane as ωi is increased from its value at the coalescence we
see that both modes remain in the upper half-plane. It is a requirement for a pinch
point that the modes that coalesce must move into distinct half-planes as we increase
the value of ωi towards infinity, and therefore these coalescing modes are not pinch
points. Koch (1986) and Shanthini (1989) discuss how the coalescence of modes that
originate in the same half-plane leads to local algebraic growth in Orr–Sommerfeld
problems, but we shall not discuss this here.

3.4. Effect of suction and blowing

In figure 12 we show the pinch point loops for βH = 0.5, corresponding to the flow over
a swept wedge of angle 45◦ and Re = 300 with different values of the suction parameter
κ. Pinch points are supported at this pressure gradient at a Reynolds number as low
as Re = 300, which is again significantly lower than the critical Reynolds number,
Re = 561, for a chordwise pinch point found by Lingwood (1997). The positive
value of κ corresponds to an application of wall suction, while the negative value
corresponds to blowing and, as we would expect, suction has a stabilizing effect on
the pinch points and blowing has a destabilizing effect. Higher levels of suction would
remove all pinch points at this Reynolds number for these parameter values. From
figure 3 we see that the application of suction corresponds to inward movement of
the inflection point and a decrease in the streamwise displacement thickness, and vice
versa for blowing. In figure 13 we show the magnitude of the growth rate ωi at the
pinch points for the same value of the pressure gradient at a Reynolds number of
1000, and a flow angle of 60◦. In this case we require much higher levels of suction to
remove the pinch points, as the magnitudes of ωi at the pinches are much larger at this
higher Reynolds number. Again we see the destabilizing effect of blowing (κ = −0.05)
and the stabilizing effect of suction (positive κ). A level of suction corresponding to
the value κ = 0.32 is required to completely remove the presence of unstable pinch
points at these values of the flow parameters.

3.5. Wave angles

We define the wave angle, φ, to be the angle between the phase fronts of the
crossflow-induced pinch points and the streamline, so φ = tan−1(β/α). In figure 14(a)
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Figure 13. Curves of the temporal growth rates at pinch points at βH = 0.5, θ = 60◦ and
Re = 1000 for a range of values of the suction/blowing parameter κ.
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Figure 14. Curves of the wave angle φ at the pinch points at Re = 1000. (a) The curves for
βH = 1.0, 0.5 and 0.1, at a flow angle of 60◦. (b) The curve for βH = −0.1, at a flow angle of 30◦.

we see that the wave angles for positive pressure gradient decrease from close to
90◦ towards 60◦ as the streamwise wavenumber is increased. (Note that since we are
plotting the unstable regions of each curve only, the curve for βH = 0.1 is shorter
than the others – see figure 8.) We also find that there is little change in the curves
as we vary positive βH , with only a slight increase of wave angle as βH decreases.
Similar results are obtained if we vary the flow angle θ. (The value of θ = 60◦ was
chosen for the positive-pressure-gradient cases in figure 14(a) as it gives a wide range
of streamwise wavenumbers, α, with an unstable pinch occurring for each value of
βH .) In figure 14(b) we present the same result for the case of negative pressure
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gradient, βH = −0.1, but now we choose θ = 30◦ to give a wide range of streamwise
wavenumbers supporting pinch points for this value of the Hartree parameter. This
time the wave angle increases from −90◦ towards −70◦ as α increases, so that once
again the disturbances are propagating close to the normal of the streamline direction,
and are orientated close to the crossflow direction. Note that the sign of the crossflow
velocity component changes as βH changes sign (see figure 2a), causing the wave
angle of the disturbances to change sign between figures 14(a) and 14(b). In general
ωr is positive at pinch points, and hence these correspond to travelling disturbances.
However, this is not always the case, as we can see from figure 15 where we plot ωi
against ωr throughout the pinch point region at βH = 1.0, Re = 1000 and θ = 45◦.
Here we see that there is an unstable pinch point with a growth rate ωi = 0.0014
and ωr = 0 which corresponds to a stationary wave (as the phase velocity has zero
real part). Such stationary waves can also be found at other values of the flow
parameters.

4. Results for a genuine airfoil
The results in the previous section were calculated for the model FSC boundary

layer profiles. Many of the results discussed involved a swept boundary layer flow
with strong pressure gradients (i.e. large values of βH ), which are only present in
the nose region of a real swept wing. The FSC boundary layers, however, deviate
considerably from boundary layers calculated on a genuine wing in the region of
rapidly changing pressure gradients which occurs near the leading edge of the wing.
Therefore, although the FSC boundary layers have been very useful in investigating
the properties of the pinch point mechanism in a qualitative sense for a swept
boundary layer, it is necessary to perform an analysis of a genuine swept-wing
boundary layer to fully understand the mechanism. It should be noted that non-
parallel flow effects might become significant in the region of very large pressure
gradient close to the nose, but in this paper we will assume that the flow is locally
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Figure 16. (a) The pressure coefficient, Cp, curve for the upper surface of the N416 airfoil over the
first 30% of chord. (b) A plot of Reynolds number based on displacement thickness, Re, against
flow angle θ. Re = 255 at the leading edge, and Re = 8000 at 30% of chord.

parallel everywhere. In this section we present results for a genuine swept wing using
the NASA natural laminar flow N416 airfoil. The term ‘natural laminar flow’ refers
to an airfoil which is designed to achieve significant regions of laminar flow using
favourable pressure gradients only, and this particular airfoil was designed for use on
a light single-engined aircraft operating in an incompressible (Mach 0.3/0.4) regime,
and it is discussed in Somers (1981). For the purposes of this paper, however, our
aim is simply to demonstrate that crossflow-induced pinch points are supported by a
physical airfoil.

The airfoil is assumed to be of infinite span and with a sweep angle 25◦, chosen to
be close to values used for commercial subsonic aircraft. The Reynolds number, Rc,
based on chord is 107. In figure 16(a) we show the pressure coefficient, Cp, over the
first 30% of the chord length on the upper surface and the curve is characterized by a
strong favourable pressure gradient over the first 10% of chord, followed by a gentle
favourable pressure gradient over the next 10% of chord, before entering the adverse
pressure region which continues to the rear of the airfoil. In figure 16(b) we plot the
flow angle θ against Reynolds number Re (based on the displacement thickness) over
the first 30% of chord and, as discussed previously, θ decreases from a value of 90◦

at the leading edge as we move in the chordwise direction, followed by a very gradual
increase in θ as we enter the region of adverse pressure gradient. Using exactly the
same approach as described in the previous section, crossflow-induced pinch points
were again found. In figure 17 we plot the growth rate ωi maximized over real α at a
pinch point (which gives the maximum growth rate in the streamwise direction) over
the first 12% of chord. Initially there is a large increase in the growth rate as we enter
the unstable region and the Reynolds number Re increases, but this is followed by a
gentle decrease in the growth rate, because the reduction in the favourable pressure
gradient as we proceed down the wing chord has a stabilizing effect on the boundary
layer (see figure 9). This effect is partially balanced by the destabilizing influence of
increasing Re as we move down the wing chord. In figure 18 we plot ωr against the
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Figure 17. Plot of maximum growth rate ωi at a pinch against percentage chord, x/c, for the
N416 airfoil at 25◦ sweep with Rc = 107.
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Figure 18. Real streamwise wavenumber α against real part of complex frequency ωr at maximum
growth rate at a pinch ωi over the first 10% of chord for the N416. At 10% chord the values of α
and ωr at the maximium value of ωi are 0.06 and 0.025 respectively.

streamwise wavenumber α at the maximum growth rate ωi, over the unstable region
of the first 12% of chord and the value of ωr and α at the maximum value of the
growth rate ωi is seen to decrease as we move down the airfoil, i.e. as the pressure
gradient decreases.
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5. Variation of search direction
The analysis in the previous two sections has been concerned with locating pinch

points in the crossflow transform plane, and thereby calculating the maximum tem-
poral growth rate contained in wavepackets propagating in the streamwise direction
(i.e. v = 0). However, this technique can be used to determine the maximum growth
for propagation in any given direction (i.e. arbitrary values of the ratio v/u ≡ tan ε),
and in particular to find ψmaxr , the maximum possible growth rate in the (u, v)-plane
(see figure 4). In order to do this we resolve the streamwise and crossflow velocity
profiles as

U ′(η) = U(η) cos ε−W (η) sin ε,

W ′(η) = U(η) sin ε+W (η) cos ε,

and search for pinch points in the new wavenumber plane corresponding to the
direction of the W ′ component of the velocity profile. In figure 19(a) we show the
maximum growth rates for a range of values of ε for the case of the FSC profile with
βH = 0.5, Re = 400 and θ = 60◦; the maximum value occurs for ε = 1.0◦. In figure
19(b) we plot the value of the imaginary part of the wavenumber in the direction of
the W ′ component of the velocity at the pinch points of maximum growth for each
value of ε, and see that βi = 0 when ε = 0.8◦. In figure 4 it is shown that the point
of maximum growth rate in the (u, v)-plane, ψmaxr , is located at the intersection of the
αi = 0 and βi = 0 curves, and by rotating the axes through ε = 0.8◦ in this case we
have mapped the u-axis onto this point. It is interesting to note that the maximum
growth rate in any given direction, i.e. the maximum growth rate of the travelling
wave system, is purely temporal in nature, as both wavenumbers are real.

In figure 20 we plot the values of the imaginary part of the crossflow wavenumber
βi for the N416 airfoil at the points of maximum growth rate plotted in figure 17.
The value of βi decreases quickly away from the leading edge, before a more gentle
reduction further down the wing. Between 4% of chord and 12% of chord the value
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Figure 20. βi at the pinch points in the streamwise direction of maximum temporal growth rate ωi
over the first 12% chord of the N416.

of βi is quite close to zero, indicating that the maximum value of ψr occurs in a
direction close to the streamwise direction, i.e. a small value of ε will locate the
direction of maximum growth rate. However, nearer the leading edge βi is much
larger, and we would have to use a large value of ε in order to resolve the profiles
into the direction of maximum amplification. Lingwood (1997) has shown that the
swept-wing boundary layer supports pinch points in the chordwise direction in the
region close to the leading edge of the leading edge, and therefore in order to locate
the direction of maximum amplification close to the leading edge of the wing we have
to resolve our velocity profiles in a direction away from the streamwise/crossflow
direction and towards the chordwise/spanwise direction.

6. Conclusions
In this paper we have analysed the behaviour of pinch points in the wavenumber

plane corresponding to the crossflow direction, and have described the effects of
variation in pressure gradient, flow angle and suction levels using linear stability
theory for the FSC boundary layer. It was then demonstrated that these pinch points
are supported in the boundary layer of a genuine swept wing. We have shown how
the pinch points can be used to find the maximum temporal growth rate obtained
by a single wave contained in the wavepacket in a given direction and, by searching
for the direction that gives the maximum growth rate, how the maximum local
amplification rate of the travelling wave system can be determined. Brevdo (1991) has
suggested a scheme for computing N-factors for an eN transition prediction scheme
by integrating the maximum local growth rates obtained by a single wave contained
in the convectively unstable wavepackets along the wing, where

N =

∫
γ

ωi

Vg(s)
ds,
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and the path γ is the integral curve in the direction of the group velocity vector
Vg of the maximal temporal growth rate. We suggest that by using the pinch point
property of the swept-wing boundary layer to locate the maximum amplification
rate at each point on the γ-curve, and integrating these growth rates to calculate
an N-factor, we can measure the amplification contained in convective wavepackets
on the swept-wing boundary layer. Such an approach would have the advantage
of describing the evolution of the maximum amplified wave for varying frequencies
contained in wavepackets at each chordwise station, rather than just modes of a
single frequency only, as used in a conventional eN analysis. It would also be possible
to study the behaviour of all the unstable waves contained in the wavepacket in this
way. Oertel & Delfs (1995) used the saddle point criterion (equations (9) and (10))
to examine the behaviour of the convective wavepacket generated by an impulse for
two chordwise stations on a swept wing. However, modifications in the growth of
the wavepacket caused by the changes that occur in the boundary layer of the swept
wing downstream of the impulse were not taken into account. This is also a weakness
of Brevdo’s scheme. However, the location of the maximum amplification of a single
wave using the pinch point property at each chordwise station provides a measure of
the total amplification contained in the convecting wavepackets, which we suggest is
a useful quantity for use in an eN-type transition prediction technique. These ideas
will be described in detail in a future paper, where we shall also extend the analysis
into the high-speed compressible regime for application to commercial aircraft.
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